# Two Span Continuous Beam - Equal Spans, Uniformly Distributed Load

Written by Jerry Ratzlaff on . Posted in Structural

## formulas that use Two Span Continuous Beam - Equal Spans, Uniformly Distributed Load

 $$\large{ R_1 = V_1 = R_3 = V_3 = \frac{3\;L}{8} }$$ $$\large{ R_2 = \frac{10\;w\;L}{8} }$$ $$\large{ V_2 = V_{max} = \frac{5\;w\;L}{8} }$$ $$\large{ M_1 = \frac{w\;L^2}{8} }$$ $$\large{ M_2 \; }$$ at  $$\large{ \left( \frac{3\;L}{8} \right) = \frac{9\;w\;L^2}{128} }$$ $$\large{ \Delta_{max} \;\; \left( 0.4215 \;L \right) }$$  from  $$\large{ \left( R_1, R_3 \right) = \frac{w\;L^4}{185\; \lambda\; I} }$$

### Where:

$$\large{ I }$$ = moment of inertia

$$\large{ L }$$ = span length of the bending member

$$\large{ M }$$ = maximum bending moment

$$\large{ P }$$ = total concentrated load

$$\large{ R }$$ = reaction load at bearing point

$$\large{ V }$$ = shear force

$$\large{ w }$$ = load per unit length

$$\large{ W }$$ = total load from a uniform distribution

$$\large{ x }$$ = horizontal distance from reaction to point on beam

$$\large{ \lambda }$$   (Greek symbol lambda) = modulus of elasticity

$$\large{ \Delta }$$ = deflection or deformation