Two Member Frame - Pin/Pin Top Uniformly Distributed Load

Written by Jerry Ratzlaff on . Posted in Structural

2fpbe 2ATwo Member Frame - Pin/Pin Top Uniformly Distributed Load Formula

\(\large{ e  = \frac{h}{L}  }\)

\(\large{ \beta = \frac{I_h}{I_v}  }\)

\(\large{ R_A  = \frac{w\;L}{8} \; \left( \frac{ 4\; \beta \; e \;+\; 5 }{\beta \; e \;+\; 1} \right)   }\)

\(\large{ R_C  = \frac{w\;L}{8} \; \left( \frac{ 4\; \beta \; e \;+\; 3 }{\beta \; e \;+\; 1} \right)   }\)

\(\large{ H_A  =  H_C =  \frac{ w\;L^2 }{ 8\;h\; \left( \beta \; e \;+\; 1 \right)   }   }\)

\(\large{ H_B  =  \frac{ w\;L^2 }{ 8\; \left( \beta \; e \;+\; 1 \right)   }   }\)

Where:

\(\large{ h }\) = height of frame

\(\large{ x }\) =  horizontal distance from reaction point

\(\large{ H }\) =  horizontal reaction load at bearing point

\(\large{ w }\) = load per unit length

\(\large{ M }\) = maximum bending moment

\(\large{ A, B, C }\) = points of intersection on frame

\(\large{ R }\) = reaction load at bearing point

\(\large{ I }\) = second moment of area (moment of inertia)

\(\large{ I_h }\) = horizontal second moment of area (moment of inertia)

\(\large{ I_v }\) = vertical second moment of area (moment of inertia)

\(\large{ L }\) = span length of the bending member

 

Tags: Equations for Frame Support