Circle

Written by Jerry Ratzlaff on . Posted in Plane Geometry

  • circle 10circle 4A two-dimensional figure where all points are at a fixed equal distance from a center point.
  • Center of a circle having all points on the line circumference are at equal distance from the center point.
  • Chord of a circle is line segment on the interior of a circle.
  • Diameter of a circle is any straight line segment that passes through the center of the circle and whose endpoints are on the circle. The diameters are the longest chords of the circle.  In the process industry, the diameter is typically used to describe the size pipe that the process is flowing through. Unless explictily specified, the diameter is assumed to mean the nominal pipe size (NPS). The inside diameter of a pipe is the longest distance between the two inside walls of the pipe. The outside diameter is the distance between the two outside walls. To find the thickness of the pipe, subtract the outside diameter from the inside diameter and divide by two.  When sizing flow meters or impact tees, a certain straight run maybe required. This is typically specified in terms of diameters. For example a 10" orifice meter with a 10 diameter upstream requirement will require 100" of unobstructed straight run upstream of the orifice plate.
  • Radius of a circle is a line segment between the center point and a point on a circle or sphere.
  • Sector of a circle is a fraction of the area of a circle with a radius on each side and an arc.
  • Segment of a circle is the area of a sector of a circle minus a piece of that sector.

Structural Shapes

area of a Circle  formula

\(\large{ A =\pi \; r^2 }\)

Where:

\(\large{ A }\) = area

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

Circumference of a Circle formula

\(\large{ C= 2 \; \pi \; r }\)

Where:

\(\large{ C }\) = circumference (perimeter)

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

Chord Arc Length of a Circle Formula

\(\large{ l =  \frac { \theta} { 180 } \; 2 \; \pi \;  r }\)

Where:

\(\large{ l }\) = length

\(\large{ r }\) = radius

\(\large{ \theta }\) = angle

\(\large{ \pi }\) = Pi

Chord Length of a Circle formula

\(\large{ c = 2 \; r \; \sin \; \frac {\theta}{2}  }\)

\(\large{ c = 2 \; \sqrt{r^2-h^2}  }\)

Where:

\(\large{ c }\) = chord

\(\large{ h, h' }\) = height

\(\large{ r }\) = radius

\(\large{ \theta }\) = angle

Diameter of a Circle formula

\(\large{ d = 2 \; r }\)

\(\large{ d = \frac {C} {\pi} }\)

\(\large{ d = \sqrt   {\frac {4 \; A} {\pi} }  }\)

Where:

\(\large{ d }\) = diameter

\(\large{ A }\) = area

\(\large{ C }\) = circumference

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

Distance from Centroid of a Circle formula

\(\large{ C_x =  r}\)

\(\large{ C_y =  r}\)

Where:

\(\large{ C_x, C_y }\) = distance from centroid

\(\large{ r }\) = radius

Elastic Section Modulus of a Circle formula

\(\large{ S =  \frac { \pi \; r^3 }  { 4  }  }\)

Where:

\(\large{ S }\) = elastic section modulus

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

Plastic Section Modulus of a Circle formula

\(\large{ Z =  \frac { d^3 }  { 6  }  }\)

Where:

\(\large{ Z }\) = plastic section modulus

\(\large{ d }\) = diameter

Polar Moment of Inertia of a Circle formula

\(\large{ J_{z} = \frac { \pi \; r^4 }  {  2  } }\)

\(\large{ J_{z1} =  \frac { 5 \; \pi \; r^4 }  {  2 } }\)

Where:

\(\large{ J }\) = torsional constant

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

Radius of a Circle formula

\(\large{ r = \frac {d} {2} }\)

\(\large{ r = \frac {C} {2 \; \pi} }\)

\(\large{ r = \sqrt {\frac {A} {\pi} }   }\)

Where:

\(\large{ r }\) = radius

\(\large{ A }\) = area

\(\large{ C }\) = circumference

\(\large{ d }\) = diameter

\(\large{ \pi }\) = Pi

Sector Area of a Circle formula

\(\large{ A =  \frac { \theta } { 360 } \; \pi \; r^2  \;\;  }\)

\(\large{ A =  \frac { \theta \; \pi } { 360 } \; r^2  \;\;  }\)

Where:

\(\large{ A }\) = area

\(\large{ r }\) = radius

\(\large{ \theta }\) = angle

\(\large{ \pi }\) = Pi

Segment Area of a Circle formula

\(\large{ A =  \frac { 1 } { 2 } \; r^2 \; \left( \;  \frac {\pi} {180}  \theta \;-\; sin \; \theta \; \right)   \;\;  }\)

\(\large{ A =  \left(  \frac { \theta \; \pi } { 360 }   \;-\;    \frac { sin \; \theta } { 2 }  \right)   r^2   \;\; }\)

Where:

\(\large{ A }\) = area

\(\large{ r }\) = radius

\(\large{ \theta }\) = angle

\(\large{ \pi }\) = Pi

Radius of Gyration of a Circle formula

\(\large{ k_{x} =    \frac { r }  {  2  }    }\)

\(\large{ k_{y} =   \frac { r }  {  2 }  }\)

\(\large{ k_{z} =   \frac {  \sqrt {2}  }  { 2  } \;  r  }\)

\(\large{ k_{x1} =   \frac {  \sqrt {5}  }  { 2  } \; r  }\)

\(\large{ k_{y1} =   \frac {  \sqrt {5}  }  { 2  } \; r }\)

\(\large{ k_{z1} =   \frac {  \sqrt {10}  }  { 2  } \; r   }\)

Where:

\(\large{ k }\) = radius of gyration

\(\large{ r }\) = radius

Second Moment of Area of a circle formula

\(\large{ I_{x} =  \frac { \pi \; r^4}{ 4 }  }\)

\(\large{ I_{y} = \frac { \pi \; r^4}{ 4 }  }\)

\(\large{ I_{x1} =   \frac { 5 \; \pi \; r^4}{ 4 }  }\)

\(\large{ I_{y1} =  \frac {5 \; \pi \; r^4}{ 4 }  }\)

Where:

\(\large{ I }\) = moment of inertia

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

Torsional Constant of a Circle formula

\(\large{ J  =  \frac {  \pi \; r^4  } {  2  }   }\)

 \(\large{ J  =  \frac {  \pi \; d^4  } {  32  }   }\)

Where:

\(\large{ J }\) = torsional constant

\(\large{ d }\) = diameter

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

 

Tags: Equations for Momentum Equations for Structural Steel Equations for Modulus