# Right Cone

Written by Jerry Ratzlaff on . Posted in Solid Geometry

•  Right cone (a three-dimensional figure) has a circle base with the apex alligned at 90° above the center of the base.
• 1 base

• Circle

### Height of a Cone formula

$$\large{ h = 3\; \frac{V}{\pi \;r^2} }$$

Where:

$$\large{ h }$$ = height

$$\large{ V }$$ = volume

$$\large{ r }$$ = radius

### Slant Height of a Cone formula

$$\large{ s = \sqrt {r^2+h^2} }$$

Where:

$$\large{ s }$$ = slant height

$$\large{ A }$$ = area

$$\large{ r }$$ = radius

$$\large{ h }$$ = height

### Surface Area of a Cone formula

$$\large{ A_s = \pi\; r\; \left( r + \sqrt { h^2 + r^2 } \right) }$$

Where:

$$\large{ A_s }$$ = surface area

$$\large{ \pi }$$ = Pi

$$\large{ \sqrt a }$$ = square root

$$\large{ r }$$ = radius

$$\large{ h }$$ = height

### Volume of a Cone formula

$$\large{ V = \frac {1}{3}\; \pi\; r^2 }$$

$$\large{ V = \frac {1}{3} \;b\;h }$$

Where:

$$\large{ V }$$ = volume

$$\large{ r }$$ = radius

$$\large{ b }$$ = base area

$$\large{ h }$$ = height

$$\large{ \pi }$$ = Pi

Tags: Equations for Volume