Rectangular Prism

Written by Jerry Ratzlaff on . Posted in Solid Geometry

  • rectangular prism 2rectangular prism4 base diagonals
  • 8 face diagonals
  • 4 space diagonals
  • 2 bases
  • 12 edges
  • 4 side faces
  • 8 vertexs

Diagonal of a Rectangular Prism formula

\(\large{ D = \sqrt {a^2 + b^2 + h^2} }\)

Where:

\(\large{ D }\) = space diagonal

\(\large{ a }\) = edge

\(\large{ b }\) = edge

\(\large{ h }\) = height

Edge of a Rectangular Prism formula

\(\large{ a = \frac { V }   {b\;h }   }\)

\(\large{ a = \sqrt {D^2 - h^2 - b^2} }\)

\(\large{ b = \frac { V }   {a\;h }   }\)

\(\large{ b = \sqrt {D^2 - h^2 - a^2} }\)

Where:

\(\large{ b }\) = edge

\(\large{ V }\) = volume

\(\large{ a }\) = edge

\(\large{ h }\) = height

\(\large{ D }\) = space diagonal

Height of a Rectangular Prism formula

\(\large{ h = \frac { V }   {a\;b }   }\)

\(\large{ h = \sqrt {D^2 - b^2 - a^2} }\)

Where:

\(\large{ h }\) = height

\(\large{ V }\) = volume

\(\large{ a }\) = edge

\(\large{ b }\) = edge

\(\large{ D }\) = space diagonal

Surface Area of a Rectangular Prism formula

\(\large{ A_s = 2\; \left( a\;b + a\;h +b\;h \right) }\)

Where:

\(\large{ A_s }\) = area

\(\large{ a }\) = edge

\(\large{ b }\) = edge

\(\large{ h }\) = height

Volume of a Rectangular Prism formula

\(\large{ V= a\;b\;h }\)

Where:

\(\large{ V }\) = volume

\(\large{ a }\) = edge

\(\large{ b }\) = edge

\(\large{ h }\) = height

 

Tags: Equations for Volume