# Right Cylinder

Written by Jerry Ratzlaff on . Posted in Solid Geometry

•  Right cylinder (a three-dimensional figure) has two circular parallel congruent bases.
• 2 bases
• See Moment of Inertia of a Cylinder

### Height of a Right Cylinder formula

$$\large{ h = \frac{V}{\pi \; r^2} }$$

Where:

$$\large{ h }$$ = height

$$\large{ r }$$ = radius

$$\large{ V }$$ = volume

$$\large{ \pi }$$ = Pi

### Lateral Surface Area of a Right Cylinder formula

$$\large{ A_l = 2\; \pi\; r\; h }$$

Where:

$$\large{ A_l }$$ = lateral surface area (side)

$$\large{ r }$$ = radius

$$\large{ h }$$ = height

### Radius of a Right Cylinder formula

$$\large{ r = \sqrt{ \frac{V}{\pi \; h} } }$$

Where:

$$\large{ r }$$ = radius

$$\large{ h }$$ = height

$$\large{ V }$$ = volume

$$\large{ \pi }$$ = Pi

### Surface Area of a Right cylinder formula

$$\large{ A_s = 2\; \pi\; r\;h+2\; \pi\; r^2 }$$

Where:

$$\large{ A_s }$$ = surface area (bottom, top, side)

$$\large{ r }$$ = radius

$$\large{ h }$$ = height

### Volume of a Right cylinder formula

$$\large{ V = \pi\; r^2\;h }$$

Where:

$$\large{ V }$$ = volume

$$\large{ r }$$ = radius

$$\large{ h }$$ = height

Tags: Equations for Volume