Sphere

Written by Jerry Ratzlaff on . Posted in Solid Geometry

  • sphere 2Sphere (a three-dimensional figure) has all points equally spaces from a given point of a three dimensional solid.
  • Lune of a sphere is the space occupied by a wedge from the center of the sphere to the surface of the sphere.
  • Sector of a sphere is the space occupied by a portion of the sphere with the vertex at the center and conical boundary.
  • Segment and zone of a sphere is the space occupied by a portion of the sphere cut by two parallel planes.
  • Sperical cap is the space occupied by a portion of the sphere cut by a plane.
  • See Moment of Inertia of a Sphere

 

 

 

sphere 3formulas that use Circumference of a Sphere

\(\large{ C= 2 \; \pi \; r }\)   
\(\large{ C= \pi \; d }\)   

Where:

\(\large{ C }\) = circumference

\(\large{ d }\) = diameter

\(\large{ r }\) = radius

\(\large{ \pi }\) = Pi

 

sphere 3formulas that use Diameter of a Sphere

\(\large{ d = 2\;r }\)   

Where:

\(\large{ d }\) = diameter

\(\large{ r }\) = radius

 

 

sphere 4formulas that use Luna of a Sphere

\(\large{ S = 2\;r^2 \;theta }\)   
\(\large{ S = \frac{\pi}{90} \;r^2 \;alpha }\)   
\(\large{ V = \frac{2}{3} \;r^3 \;theta }\)   
\(\large{ V = \frac{\pi}{270} \;r^3 \;alpha }\)  

Where:

\(\large{ S }\) = surface area

\(\large{ V }\) = volume

\(\large{ \pi }\) = Pi

\(\large{ r }\) = radius

 

sphere 7formulas that use Sector of a sphere

\(\large{ S =  2\; \pi \;r \;h  }\)   
\(\large{ S = \pi \;r\;  \left( 2\;h+r \right)  }\)   
\(\large{ V = \frac {2}{3}\; \pi \; r^2\;h }\)   
\(\large{ V = \frac {2\; \pi \; r^2\;h}{3}  }\)  

Where:

\(\large{ S }\) = surface area

\(\large{ V }\) = volume

\(\large{ h }\) = height

\(\large{ \pi }\) = Pi

\(\large{ r }\) = radius

\(\large{ r_1 }\) = radius

 

sphere 5formulas that use Segment and Zone of a Sphere

\(\large{ S =  2\; \pi \;r \;h  }\)   
\(\large{ V =  \frac{\pi}{6} \; \left(3\;r_1^2+ 3\;r_2^2+h^2\right)\;h      }\)   

Where:

\(\large{ S }\) = surface area

\(\large{ V }\) = volume

\(\large{ h }\) = height

\(\large{ \pi }\) = Pi

\(\large{ r_1 }\) = radius

\(\large{ r_2 }\) = radius of the top

 

sphere 6formulas that use Spherical Cap

\(\large{ r =  \frac{h^2\;+\;r_2^2}{2\;h}  }\)   
\(\large{ S =  2\; \pi \;r \;h  }\)   

Where:

\(\large{ S }\) = surface area

\(\large{ h }\) = height

\(\large{ \pi }\) = Pi

\(\large{ r }\) = radius

 

sphere 3formulas that use Surface Area of a sphere

\(\large{ S =  2\; \pi \;r^2  }\)   

Where:

\(\large{ S }\) = surface area

\(\large{ \pi }\) = Pi

\(\large{ r }\) = radius

 

sphere 3formulas that use Volume of a sphere

\(\large{ V =  \frac{4}{3} \; \pi \;r^3  }\)   

Where:

\(\large{ V }\) = volume

\(\large{ \pi }\) = Pi

\(\large{ r }\) = radius

 

Tags: Equations for Volume