Frequency

Written by Jerry Ratzlaff on . Posted in Electromagnetism

Frequency, abbreviated as f or FREQ, is the number of times an alternating current reverses itself in one second.  Expressed in Hertz (Hz), which is one cycle per second.

Frequency formula

(Eq. 1)  $$\large{ f = \frac { 1 } { T } }$$

(Eq. 2)  $$\large{ f = \frac { N_c } { t } }$$

(Eq. 3)  $$\large{ f = \frac{v}{ \lambda } }$$

(Eq. 4)  $$\large{ f = \frac{c}{ \lambda } }$$

(Eq. 5)  $$\large{ f = \frac{\omega}{ 2 \; \pi } }$$

Where:

$$\large{ f }$$ = frequency

$$\large{ \omega }$$  (Greek symbol omega) = angular frequency

$$\large{ N_c }$$ = number of cycles

$$\large{ \pi }$$ = Pi

$$\large{ c }$$ = speed of light or velocity

$$\large{ t }$$ = time

$$\large{ T }$$ = time period, the time required for one cycle or wave occillation

$$\large{ \lambda }$$  (Greek symbol \lambda) = wavelength

$$\large{ v }$$ = wavelength velocity

Solve for:

$$\large{ \omega = 2 \; \pi \; f }$$

$$\large{ c = \frac { \lambda } { f } }$$

$$\large{ T = \frac { 1 } { f } }$$

(Eq. 1)  $$\large{ \lambda = \frac { c } { f } }$$

(Eq. 2)  $$\large{ \lambda = c \; T }$$

$$\large{ v = \frac { f } { \lambda } }$$