Pipe Sizing for Condensate Recovery

Written by Jerry Ratzlaff on . Posted in Fluid Dynamics

Condensate Recovery Pressure Loss through piping formula

Pressure Loss through piping formula

\(\large{ p_l =   \frac  { 1000 \; \mu \;  l \;  v_c{^2}  }  {2\;d  \; V_{temp}  }   }\)

Where:

\(\large{ p_l }\) = condensate pressure loss

\(\large{ \mu }\)  (Greek symbol mu) = friction coefficient

\(\large{ l }\) = pipe length

\(\large{ v_c }\) = condensate velocity

\(\large{ d }\) = pipe inner diameter

\(\large{ V_{temp} }\) = temporary specific volume variable

Velocity Through Piping formula

\(\large{ v_c = \frac {  1000\;m_c  \;   V_{temp}  }    { 3.6\; \pi \; { \left( \frac {d}{2} \right) ^2  }   } }\)

Where:

\(\large{ v_c }\) = condensate velocity

\(\large{ m_c }\) = condensate load

\(\large{ V_{temp} }\) = temporary specific volume variable

\(\large{ \pi }\) = Pi

\(\large{ d }\) = pipe inner diameter

Condensate Recovery Velocity through piping formula

Pressure Loss through piping formula

\(\large{ p_l =   \frac  { \mu \;  l \;  v_s{^2} }  {2\;d \;  V_{temp} }   }\)

Where:

\(\large{ p_l }\) = steam pressure loss

\(\large{ \mu }\)  (Greek symbol mu) = friction coefficient

\(\large{ l }\) = pipe length

\(\large{ v_s }\) = steam velocity

\(\large{ d }\) = pipe inner diameter

\(\large{ V_{temp} }\) = temporary specific volume variable

pipe inner diameter formula

\(\large{ d =   \sqrt {   \frac { 4 } { \pi } \; \frac { m_c \;  V_{temp} } {3600\;v_c}      } }\)

Where:

\(\large{ d }\) = pipe inner diameter

\(\large{ \pi }\) = Pi

\(\large{ m_c }\) = condensate load

\(\large{ V_{temp} }\) = temporary specific volume variable

\(\large{ v_c }\) = condensate velocity

 

Tags: Equations for Pipe Sizing Equations for Condensate