Linear Thermal Restrained Expansion

Written by Jerry Ratzlaff on . Posted in Thermodynamics

expansion restrained 1Linear Thermal Restrained Expansion Formulas

(Eq. 1)  \(\large{ \Delta p  =   \lambda\; A_i \; \alpha_l \; \Delta T  }\)                      

(Eq. 2)  \(\large{ \sigma_c  =  - \frac{p}{A_i} }\)        

(Eq. 3)  \(\large{ \sigma_c  = - \lambda\; A_i \; \alpha_l \; \Delta T  }\)

Where:

\(\large{ \Delta p }\) = pressure differential

\(\large{ \sigma_c }\)  (Greek symbol sigma) = compressive stress

\(\large{ \alpha_l }\)   (Greek symbol alpha) = linear thermal expansion coefficient

\(\large{ A_i }\) = initial area of object

\(\large{ \lambda }\)  (Greek symbol lambda) = modulus of elasticity

\(\large{ p }\) = pressure

\(\large{ \Delta T }\) = temperature differential

 

Tags: Equations for Thermal