Nomenclature & Symbols for Engineering, Mathematics, and Science
Formula nomenclature is a system of names or terms represented by letters and the Greek alphabet assigned to represent equation physical quantities. Definition symbols vary widely and do not necessarily represent the information being presented the way an abbreviation does. These alphabetical lists contain symbols, greek symbols, definitions, US units, metric units, dimensionless numbers, constants, and constant values.
Nomenclature & Symbols for Engineering, Mathematics, and Science
A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z
Nomenclature & Symbols for Accounting, Business, and Finance
Site Lists
List of all Site Categories, List of all Tags, List of all Site Glossaries
Nomenclature and Symbols Glossary
Algebra Symbols, Angle and Line Symbols, ASCII Characters, Basic Math Symbols, Bracket Symbols, Equivalence Symbols, Geometry Symbols, Greek Alphabet, HTML Colors, Miscellaneous Symbols, Roman Numerals, Set Symbols, Square Root Symbols
Unit Equalities
Unit - Symbol | English | Metric | SI |
Ampere - \(A\), \(\;I\) |
\(I\) | \(I\) = \(\large{\frac{C}{s}}\) | \(C - s^{-1}\) |
Btu - \(Btu\) | \(Btu\) = \(lbf-ft\) | \(Btu\) = \(J\) = \(kJ\) = \(W-h\) | \(J\) |
Celsius - \(C\) | - | \(C\) | \(x+273.15\;K\) |
Coulomb - \(C\) | - | \(C\) = \(A-s\) | \(A-s\) |
Farad - \(F\) | - | \(F\) = \(\large{\frac{s^4-A^2}{kg-m^2}}\) = \(\large{\frac{S^2-C^2}{kg-m^2}}\) = \(\large{\frac{C}{V}}\) = \(\large{\frac{A-s}{V}}\) = \(\large{\frac{W-s}{V^2}}\) = \(\large{\frac{J}{V^2}}\) = \(\large{\frac{N-m}{V^2}}\) = \(\large{\frac{C^2}{J}}\) = \(\large{\frac{C^2}{N-m}}\) = \(\large{\frac{S}{\Omega}}\) = \(\large{\frac{1}{\Omega-Hz}}\) = \(\large{\frac{S}{Hz}}\) = \(\large{\frac{s^2}{H}}\) | \(s^4-A^2-kg^{-1}-m^{-2}\) |
Gauss - \(G\) | - | \(G\) = \(\large{\frac{T}{10^4}}\) = \(Mx-cm^2\) = \(\large{\frac{g}{Bi-s^2}}\) | \(T-10^{-4}\) |
Henry - \(H\) | - | \(H\) = \(\large{\frac{kg-m^2}{s^2-A^2}}\) = \(\large{\frac{N-m}{A^2}}\) = \(\large{\frac{kg-m^2}{C^2}}\) = \(\large{\frac{J}{A^2}}\) = \(\large{\frac{T-m^2}{A}}\) = \(\large{\frac{Wb}{A}}\) = \(\large{\frac{V-s}{A}}\) = \(\large{\frac{s^2}{F}}\) = \(\large{\frac{\Omega}{Hz}}\) = \(\Omega-s\) | \(kg-m^2-s^{-2}-A^{-2}\) |
Hertz - \(Hz\) | - | \(Hz\) = \(s^{-1}\) (one cycle per sec) | \(s^{-1}\) |
Horespower - \(hp\) | \(hp\) | \(hp\) = \(W\) | \(W\) |
Joule - \(J\) | \(lbf-ft\) | \(J\) = \(\large{\frac{kg-m^2}{s^2}}\) = \(N-m\) = \(Pa-m^3\) = \(W-s\) = \(C-V\) = \(\Omega-A^2-s\) | \(kg-m^2-s^{-2}\) |
Joule-sec - \(J-s\) | \(\large{\frac{lbf-ft}{sec}}\) | \(J-s\) = \(\large{\frac{kg-m^2}{s}}\) | \(kg-m^2-s^{-1}\) |
Kelvin - \(K\) | - | \(K\) | \(x-273.15\;C\) |
Maxwell - \(Mx\) | - | \(Mx\) = \(\large{\frac{Wb}{10^{8}}}\) = \(\large{\frac{G}{cm^2}}\) | \(Wb-10^{-8}\) |
Newton - \(N\) | \(lbf\) | \(N\) = \(\large{\frac{kg-m}{s^2}}\) | \(kg-m-s^{-2}\) |
Newton-meter - \(N-m\) | \(lbf-ft\) | \(N-m\) = \(\large{\frac{kg-m^2}{s^2}}\) | \(kg-m^2-s^{-2}\) |
Ohm - \((\Omega)\), \(\;(R)\) | \(\Omega\) | \(\Omega\) = \(\large{\frac{kg-m^2}{s^3-A^2}}\) = \(\large{\frac{kg-m^2}{s-C^2}}\) = \(\large{\frac{J}{s-A^2}}\) = \(\large{\frac{V}{A}}\) = \(\large{\frac{1}{S}}\) = \(\large{\frac{W}{A^2}}\) = \(\large{\frac{V^2}{W}}\) = \(\large{\frac{s}{F}}\) = \(\large{\frac{H}{s}}\) = \(\large{\frac{J-s}{C^2}}\) | \(kg-m^2-s^{-3}-A^{-2}\) |
Poise - \(P\) | \(\large{\frac{lbf}{ft-sec}}\) | \(P\) = \(\large{\frac{kg}{0.1\;m-s}}\) = \(1\;dyn-s-cm^2\) = \(\large{\frac{N-s}{m^2}}\) | \(kg-0.1\;m^{-1}-s^{-1}\) |
Pascal - \(Pa\) | \(\large{\frac{lbf}{in^2}}\) | \(Pa\) = \(\large{\frac{kg}{m-s^2}}\) = \(\large{\frac{N}{m^2}}\) = \(\large{\frac{J}{m^3}}\) | \(kg-m^{-1}-s^{-2}\) |
Pascal-sec - \(Pa-s\) | \(\large{\frac{lbf-sec}{ft^2}}\) | \(Pa-s\) = \(\large{\frac{kg}{m-s}}\) = \(\large{\frac{N-s}{m^2}}\) = \(10\;P\) | \(kg-m^{-1}-s^{-1}\) |
MegaPascal - \(MPa\) | \(\large{\frac{lbf}{in^2}}\) | \(MPa\) = \(\large{\frac{N}{mm^2}}\) | \(N-mm^{-2}\) |
Siemens - \(S\) | - | \(S\) = \(\large{\frac{s^3-A^2}{kg-m^2}}\) | \(s^3-A^2-kg^{-1}-m^{-2}\) |
Tesla - \(T\) | - | \(T\) = \(\large{\frac{kg}{s^2-A}}\) = \(\large{\frac{V-s}{m^2}}\) = \(\large{\frac{N}{A-m}}\) = \(\large{\frac{J}{A-m^2}}\) = \(\large{\frac{H-A}{m^2}}\) = \(\large{\frac{Wb}{m^2}}\) = \(\large{\frac{kg}{C-s}}\) = \(\large{\frac{N-s}{C-m}}\) = \(\large{\frac{kg}{A-s^2}}\) | \(kg-s^{-2}-A^{-1}\) |
Torr - \(Torr\) | - | \(Torr\) = \(Pa\) | \(Pa\) |
Volt - \(V\) | \(V\) |
\(V\) = \(\large{\frac{kg-m^2}{s^{3}-A}}\) = \(A-\Omega\) = \(\large{\frac{Wb}{s}}\) = \(\large{\frac{W}{A}}\) = \(\large{\frac{J}{C}}\) = \(\large{\frac{eV}{e}}\)
|
\(kg-m^2-s^{-3}-A^{-1}\) |
Watt - \((W)\), \(\;(P)\) | \(\large{\frac{lbf-ft^2}{ssec^3}}\) | \(W\) = \(\large{\frac{kg-m^2}{s^3}}\) = \(\large{\frac{J}{s}}\) = \(\large{\frac{N-m}{s}}\) | \(kg-m^2-s^{-3}\) |
Weber - \(Wb\) | \(\large{\frac{V}{sec}}\) | \(Wb\) = \(\large{\frac{kg-m^2}{s^2-A}}\) = \(\large{\frac{N-m}{A}}\) = \(\large{\frac{J}{A}}\) = \(\Omega-C\) = \(V-s\) = \(H-S\) = \(T-m^2\) = \(10^8-Mx\) | \(kg-m^2-s^{-2}-A^{-1}\) |
Unit - Symbol | English | Metric | SI |